APPLICABILITY OF NON-INVASIVE VENTILATION IN COVID-19 PATIENTS
DOI:
https://doi.org/10.32782/2411-9164.21.2-5Keywords:
non-invasive ventilation, CPAP therapy, high flow nasal cannula, ARDS, COVID-19Abstract
Introduction. Non-invasive ventilation (NIV) has revolutionized the management of respiratory failure, providing an alternative to invasive mechanical ventilation (IMV) with reduced risks and complications. Amid the COVID-19 pandemic, the importance of NIV has been accentuated, necessitating a comprehensive understanding of its evolution, types, and clinical applications. This review aims to elucidate the key aspects of NIV, including its modes, indications, comparative effectiveness, and factors influencing success and failure. By synthesizing existing literature, this study seeks to provide valuable insights into the optimal use of NIV in various respiratory conditions, particularly in the context of COVID-19. Material and methods. Narrative literature review. Bibliographic search in the PubMed, NCBI and Google Academic databases, using the keywords: “NIV”, “NIV modes”, “CPAP”, “respiratory conditions”, “ARDS”, “HFNC”, “success predictors”, “failure predictors”, “early intervention”, “COVID-19”, “clinical application”, which were combined with each other. The final bibliography included 80 references. Results. The review highlights the evolution of NIV technology and its various modes, including Continuous Positive Airway Pressure (CPAP), Bilevel Positive Airway Pressure (BiPAP), Proportional Assist Ventilation (PAV), and Average Volume Assured Pressure Support (AVAPS). Indications for NIV encompass a wide range of respiratory conditions, with comparative effectiveness studies indicating its efficacy in conditions such as Chronic Obstructive Pulmonary Disease (COPD) exacerbations and Acute Respiratory Distress Syndrome (ARDS). Success and failure predictors for NIV underscore the importance of early intervention, appropriate patient selection, and meticulous monitoring to optimize outcomes and mitigate complications. Conclusion. NIV represents a vital therapeutic modality for managing respiratory distress, offering advantages over IMV in select cases. The evolution of NIV technology has led to the development of various modes, catering to diverse clinical scenarios. However, success with NIV hinges on timely intervention, appropriate patient selection, and vigilant monitoring to prevent complications. In the context of the COVID-19 pandemic, NIV assumes heightened significance, necessitating a nuanced approach to its clinical application.
References
Hill, N.S. (1986). Clinical applications of body ventilators. Chest. 90(6):897–905. doi: 10.1378/chest.90.6.897.
Lightowler, J.V., & Elliott, M.W. (2000). Predicting the outcome from NIV for acute exacerbations of COPD. Thorax. 55:815–6. doi: 10.1136/thorax.55.10.815.
Jaber, S., Michelet, P., & Chanques, G. (2010). Role of non-invasive ventilation (NIV) in the perioperative period. Best Pract Res Clin Anaesthesiol. 24(2):253–65. doi: 10.1016/j.bpa..02.007.
Addala, D., Shrimanker, R., & Davies, M.G. (2017). Non-invasive ventilation: initiation and initial management. Br J Hosp Med (Lond).78:C140–C4. doi: 10.12968/hmed.2017.78.9.C140.
Yarrarapu, S.N.S., Saunders, H., & Sanghavi, D. (2024). Average volume-assured pressure support. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; [cited 2024 March 12]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560600/.
Floyd, L., Stauss, M., Storrar, J., Vanalia, P., France, A., & Dhaygude, A. (2021). Using CPAP in COVID-19 patients outside of the intensive care setting: a comparison of survival and outcomes between dialysis and non-dialysis dependent patients. BMC Nephrol. 22(1):144. doi: 10.1186/s12882-021-02341-x.
Cabrini, L., Ghislanzoni, L., Severgnini, P., Landoni, G., Baiardo, Redaelli, M., Franchi, F., et al. (2021). Early versus late tracheal intubation in COVID-19 patients: a “pros/cons” debate also considering heart-lung interactions. Minerva Cardiol Angiol. 69(5):596–605. doi: 10.23736/S2724-5683.20.05356-6.
Buheji, M., Costa, Cunha, Kd., Barbosa, Rocha, R.S. (2020). Ventilators in COVID-19, between scarcity and abundance mindset. Int J Adv Res Eng Tech. 11(10):751–67. doi: 10.34218/IJARET.11.10.2020.077/
Nava, S., & Hill, N. (2009). Non-invasive ventilation in acute respiratory failure. Lancet. 374:250–9.
Rochwerg, B., Brochard, L., Elliott, MW., Hess, D., Hill, N.S., Nava, S., et al. (2017). Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 50(2):1602426. doi: 10.1183/13993003.02426-2016.
Ahmed, A.A., & Hill, N.S. (2024). Noninvasive positive pressure ventilation. In: Vincent J.L., Moore F.A., Bellomo R., Marini J.J. (editors). Textbook of critical care. 8th ed. Amsterdam: Elsevier. P. 401–409.
Correa, T.D., Sanches, P.R., Morais, L.C., Scarin, F.C., Silva, E., Barbas, C.S.V. (2015). Performance of noninvasive ventilation in acute respiratory failure in critically ill patients: a prospective, observational, cohort study. BMC Pulm Med. 15(1):144.
Moretti, M., Cilione, C., Tampieri, A., Fracchia, C., Marchioni, A., & Nava, S. (2000). Incidence and causes of non-invasive mechanical ventilation failure after initial success. Thorax. 55(10):819–825. doi: 10.1136/thorax.55.10.819.
Antonelli, M., Conti, G., Moro, M., et al. (2001). Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med. 27(11):1718–1728.
Nava, S., & Ceriana, P. (2004). Causes of failure of noninvasive mechanical ventilation. Respir Care. 49(3):295–303.
Confalonieri, M., Garuti, G., Cattaruzza, M.S., Osborn, J.F., Antonelli, M., et al. (2005). A chart of failure risk for noninvasive ventilation in patients with COPD exacerbation. Eur RespirJ. 25(2):348–355.
Martín-González, F., González-Robledo, J., Sánchez-Hernández, F., et al. (2016). Effectiveness and predictors of failure of noninvasive mechanical ventilation in acute respiratory failure. Med Intensiva. 40(1):9–17. doi: 10.1016/j.medin.2015.01.007.
Liengswangwong, W., Yuksen, C., Thepkong, T., et al. (2020). Early detection of non-invasive ventilation failure among acute respiratory failure patients in the emergency department. BMC Emerg Med. 20(1):80. doi: 10.1186/s12873-020-00376-1.
Duan, J., Han, X., Bai, L., Zhou, L., & Huang, S. (2017). Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med. 43(2):192–199. doi: 10.1007/s00134-016-4601-3.
Bellani, G., Laffey, J.G., Pham, T., Madotto, F., Fan, E., Brochard, L., et al. (2017). Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE Study. Am J Respir Crit Care Med. 195(1):67–77. doi: 10.1164/rccm.201606-1306OC.
Zuo, M.Z., Huang, Y.G., Ma, W.H., Xue, Z.G., Zhang, J.Q., Gong., Y.H, et al. (2020). Expert recommendations for tracheal intubation in critically ill patients with Noval Coronavirus Disease 2019. Chin Med Sci J. 35(2):105–9. doi: 10.24920/003724.
Cook, T.M., El-Boghdadly, K., McGuire, B., McNarry, A.F., Patel, A., Higgs, A. (2020). Consensus guidelines for managing the airway in patients with COVID-19: guidelines from the Difficult Airway Society, the Association of Anaesthetists the Intensive Care Society, the Faculty of Intensive Care Medicine and the Royal College of Anaesthetists. Anaesthesia. 75(6):785–99. doi: 10.1111/anae.15054.
Esnault, P., Cardinale, M., Hraiech, S., Goutorbe, P., Baumstrack, K., Prud’homme, E., et al. (2020). High respiratory drive and excessive respiratory efforts predict relapse of respiratory failure in critically ill patients with COVID-19. Am J Respir Crit Care Med. 202(8):1173–8. doi: 10.1164/rccm.202005-1582LE
Lang, M., Som, A., Mendoza, D.P., Flores, E.J., Reid, N., Carey, D., et al. (2020). Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT. Lancet Infect Dis. 20(12):1365–6. doi: 10.1016/S1473-3099(20)30367-4.
Cammarota, G., Esposito, T., Azzolina, D., Cosentini, R., Menzella, F., Aliberti, S., et al. (2021). Noninvasive respiratory support outside the intensive care unit for acute respiratory failure related to coronavirus-19 disease: a systematic review and meta-analysis. Crit Care. 25(1):268. doi: 10.1186/s13054-021-03697-0.
Papoutsi, E., Giannakoulis, V.G., Xourgia, E., Routsi, C., Kotanidou, A., & Siempos, II. (2021). Effect of timing of intubation on clinical outcomes of critically ill patients with COVID-19: a systematic review and meta-analysis of non-randomized cohort studies. Crit Care. 25(1):121. doi: 10.1186/s13054-021-03540-6.
Vitacca, M., Nava, S., Santus, P., & Harari, S. (2020). Early consensus management for non-ICU acute respiratory failure SARS-CoV-2 emergency in Italy: from ward to trenches. Eur Respir J. 55(5):2000632. doi: 10.1183/13993003.00632-2020.
Mauri, T., Turrini, C., Eronia, N., Grasselli, G., Volta, C.A., Bellani, G., et al. (2017). Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 195:1207–15. doi: 10.1164/rccm.201605-0916OC.
Aboab, J., Jonson, B., Kouatchet, A., Taille, S., Niklason, L., & Brochard, L. (2006). Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med. 32:1979–86.
Palmer, E., Post, B., Klapaukh, R., Marra, G., MacCallum, N.S., Brealey, D., et al. (2019). The association between supraphysiologic arterial oxygen levels and mortality in critically ill patients. A multicenter observational cohort study. Am J Respir Crit Care Med. 200:1373–80.
Alqahtani, J.S., Mendes, R.G., Aldhahir, A., Rowley, D., AlAhmari, M.D., Ntoumenopoulos, G., et al. (2020). Global current practices of ventilatory support management in COVID-19 patients: an international survey. J Multidiscip Healthc. 2020; 13:1635–48. doi: 10.2147/JMDH.S279031.
Azoulay, E., de Waele, J., Ferrer, R., Staudinger, T., Borkowska, M., Povoa, P., et al. (2020). International variation in the management of severe COVID-19 patients. Crit Care. 24(1):486. doi: 10.1186/s13054-020-03194-w.
Nasa, P., Azoulay, E., Khanna, A.K., Jain, R., Gupta, S., Javeri, Y., et al. (2021). Expert consensus statements for the management of COVID-19 –related acute respiratory failure using a Delphi method. Crit Care. 25(1):106. doi: 10.1186/s13054-021-03491-y.
Oranger, M., Gonzalez-Bermejo, J., Dacosta-Noble, P., Llontop, C., Guerder, A., Trosini-Desert, V., et al. (2020). Continuous positive airway pressure to avoid intubation in SARS-CoV-2 pneumonia: a two-period retrospective case-control study. Eur Respir J. 56(2):2001692.
Alviset, S., Riller, Q., Aboab, J., Dilworth, K., Billy, P-A, Lombardi, Y., et al. (2020). Continuous positive airway pressure (CPAP) face-mask ventilation is an easy and cheap option to manage a massive influx of patients presenting acute respiratory failure during the SARS-CoV-2 outbreak: a retrospective cohort study. PLoS ONE. 15(10):e0240645.
Noeman-Ahmed, Y., Gokaraju, S., Powrie, D.J., Amran, D.A., Sayed, I.E., & Roshdy, A. (2020). Predictors of CPAP outcome in hospitalized COVID-19 patients. Respirology. 25(12):1316–9.
Brusasco, C., Corradi, F., Di Domenico, A., Raggi, F., Timossi, G., Santori, G., et al. (2020). Continuous positive airway pressure in Covid-19 patients with moderate-to-severe respiratory failure. Eur Respir J. 57(2):2002524.
Radovanovic, D., Coppola, S., Franceschi, E., Gervasoni, F., Duscio, E., Chiumello, D.A., et al. (2021). Mortality and clinical outcomes in patients with COVID-19 pneumonia treated with non-invasive respiratory support: a rapid review. J Crit Care. 65:1–8.
Wendel Garcia, P.D., Aguirre-Bermeo, H., Buehler, P.K., Alfaro-Farias, M., Yuen, B., David, S., et al. (2021). Implications of early respiratory support strategies on disease progression in critical COVID-19: a matched subanalysis of the prospective RISC-19-ICU cohort. Crit Care. 25(1):175.
Colaianni-Alfonso, N., Montiel, G., Castro-Sayat, M., Siroti, C., Laura Vega, M., Toledo, A., Haedo, S., Previgliano, I., Mazzinari, G., Miguel Alonso-Íñigo, J. (2021). Combined Noninvasive Respiratory Support Therapies to Treat COVID-19. Respir Care. 66(12):1831–1839. doi: 10.4187/respcare.09162.
Boscolo, A., Pasin, L., Sella, N., Pretto, C., Tocco, M., Tamburini, E., et al. (2021). Outcomes of COVID-19 patients intubated after failure of non-invasive ventilation: a multicenter observational study. Sci Rep. 11(1):17730.
Vaschetto, R., Barone-Adesi, F., Racca, F., Pissaia, C., Maestrone, C., Colombo, D., et al. (2021). Outcomes of COVID-19 patients treated with continuous positive airway pressure outside the intensive care unit. ERJ Open Res. 7(1):00541–2020. doi: 10.1183/23120541.00541-2020.
González-García, J.G., Pascual-Guardia, S., Aguilar Colindres, R.J., Ausín, Herrero, P., Alvarado, Miranda, M., Arita, Guevara, M., et al. (2021). Incidence of pulmonary embolism in patients with non-invasive respiratory support during COVID-19 outbreak. Respir Med. 178:106325.
Cruces, P., Retamal, J., Hurtado, D.E., et al. (2020). A physiological approach to understand the role of respiratory effort in the progression of lung injury in SARS-CoV-2 infection. Crit Care. 24(1):494. doi: 10.1186/s13054-020-03197-7.
Gattinoni, L., Chiumello, D., Caironi, P., Busana, M., Romitti, F., Brazzi, L., Camporota, L. (2020). COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 46(6):1099–102.
Bhatraju, P.K., Ghassemieh, B.J., Nichols. M., et al. (2020). Covid-19 in critically ill patients in the Seattle region – case series. N Engl J Med. 382(21):2012–22.
Liu, L., Xie, J., Wu, W., Chen, H., Li, S., He, H., et al. (2021). A simple nomogram for predicting failure of non-invasive respiratory strategies in adults with COVID-19: a retrospective multicentre study. Lancet Digit Health. 3(3):e166–74. doi: 10.1016/S2589-7500(20)30316-2.