ANTIDOTE TOXICITY: WHEN THE CURE BECOMES THE POISON

Authors

DOI:

https://doi.org/10.32782/2411-9164.23.2-6

Keywords:

antidotes, clinical toxicology, drug toxicity, iatrogenesis, pharmacological safety

Abstract

In clinical toxicology, antidotes are traditionally viewed as «magic bullets» capable of specifically neutralizing a poison. However, this perception is dangerously simplistic, as antidotes themselves are potent pharmacological agents with significant inherent potential for iatrogenic toxicity. Objective. The purpose of this review article is to critically analyze the paradox of antidote therapy. The objective is to move beyond the traditional «antidote-poison» pairing and to classify common antidotes based on the fundamental mechanisms by which they cause toxicity, drawing upon contemporary scientific literature. Methods. A critical analysis and synthesis of modern scientific literature (including systematic reviews, clinical trials, and case reports) was conducted to identify, categorize, and describe the mechanisms of iatrogenic toxicity associated with the use of common antidotes in emergency medicine. Results. The analysis demonstrates that antidote toxicity is a predictable pharmacological event. A classification framework is proposed, grouping toxicity mechanisms into four categories: (1) Toxicity via excessive pharmacological antagonism (e.g., naloxone-precipitated acute withdrawal; flumazenil-induced seizures by unmasking pro-convulsant effects in mixed overdoses); (2) Inherent or direct toxicity (e.g., N-acetylcysteineinduced anaphylactoid reactions; methylene blue’s dose-dependent oxidant effects and MAO inhibition; nitrite-induced iatrogenic methemoglobinemia); (3) Toxicity of chelation therapy (e.g., deferoxamine-induced hypotension and infection potentiation; dimercaprol-mediated metal redistribution to the CNS; EDTA-induced hypocalcemia and nephrotoxicity); and (4) Toxicity from metabolic manipulation (e.g., sodium bicarbonate-induced hypokalemia and alkalosis; complications of high-dose insulin euglycemic therapy). Conclusions. Antidote-induced harm is not an anomaly but an expected consequence of its pharmacology. This necessitates a paradigm shift from reflexive, protocol-based administration to a considered, individualized risk-benefit assessment. Practical recommendations for clinicians are formulated (e.g., avoiding «coma cocktails», titrating to clinical effect), and the importance of future pharmacogenetic research (e.g., G6PD deficiency) for personalizing therapy is emphasized.

References

Hollmann, P., Borchert, J. (2023). The «Magic Bullet» paradigm: Antidote use in modern emergency medicine. J Med Toxicol. Vol. 19(2). P. 123–130. DOI: 10.1007/s13181-023-00950-z.

Grandinetti, G. (2021). Paracelsus revisited: The dose-response relationship in iatrogenic toxicity. History of Medicine Journal. Vol. 45(1). P. 45–58.

Петренко, В. М., Коваленко, О. С. (2024). Побічні події при введенні антидотів: 10-річний ретроспективний аналіз. Український токсикологічний журнал. № 3(1). С. 22–29.

Johnson, L., Smith, R. (2023). Beyond the protocol: The need for individualized risk-benefit assessment in antidotal therapy. Ann Emerg Med. Vol. 81(4). P. 450–452. DOI: 10.1016/j.annemergmed.2023.01.001.

Wampler, D. A., Molina, D. K. (2022). Naloxone-associated morbidity: A review of acute opioid withdrawal syndromes. Am J Emerg Med. Vol. 55. P. 18–24. DOI: 10.1016/j.ajem.2022.02.043.

Chen, Y. et al. (2021). The pathophysiology of naloxone-precipitated catecholamine storm: A systematic review. Clin Toxicol (Phila). Vol. 59(8). P. 689–697. DOI: 10.1080/15563650.2021.1891501.

Kliegel, A. et al. (2020). Naloxone-induced non-cardiogenic pulmonary edema (NCPE): Case series and literature review. J Crit Care. Vol. 58. P. 77–82. DOI: 10.1016/j.jcrc.2020.04.010.

Sivilotti, M. L. A. (2019). Flumazenil in benzodiazepine-dependent patients: Risks of protracted withdrawal and status epilepticus. Toxicol Rev. Vol. 38(3). P. 201–210.

Weinbroum, A. A. et al. (1995). The flumazenil/tricyclic antidepressant combination: A potentially lethal interaction. J Toxicol Clin Toxicol. Vol. 33(4). P. 399–403. DOI: 10.3109/15563659509010620.

Kreshak, A. A., Cantrell, F. L. (2022). The role of flumazenil in the modern «coma cocktail»: A critical re-evaluation. J Emerg Med. Vol. 62(1). P. 50–57. DOI: 10.1016/j.jemermed.2021.09.020.

Петрова, А. Д., Мельник, І. В. (2023). Атропінізація при отруєнні ФОС: балансування на межі двох токсичних синдромів. Медицина невідкладних станів. № 14(2). С. 112–119.

Davies, J.O. et al. (2021). Central anticholinergic syndrome secondary to atropine overdose in OPP management. Crit Care Med. Vol. 49(9). P. e870–e875. DOI: 10.1097/CCM.0000000000005077.

Sandilands, E. A., Bateman, D. N. (2009). Adverse reactions associated with intravenous N-acetylcysteine. Clin Toxicol (Phila). Vol. 47(2). P. 81–88. DOI: 10.1080/15563650802665564.

Schmidt, L. E. et al. (2015). Mechanism of N-acetylcysteine-induced histamine release in human subjects. Br J Clin Pharmacol. Vol. 80(1). P. 105–111. DOI: 10.1111/bcp.12595.

Harvey, J. W., Keitt, A. S. (1983). Methylene blue as an oxidant: A paradoxical dose-dependent toxicity. Blood. Vol. 62(5). P. 1015–1020.

Ramsay, R. R. et al. (2017). Methylene blue as a monoamine oxidase A inhibitor: A risk factor for serotonin toxicity. Toxicol Sci. Vol. 155(1). P. 183–190. DOI: 10.1093/toxsci/kfw203.

Hall, A. H. et al. (2018). Iatrogenic methemoglobinemia in cyanide poisoning: The risks of the nitrite-based antidote kit. J Med Toxicol. Vol. 14(3). P. 205–212. DOI: 10.1007/s13181-018-0660-8.

Johnson, R. P. (2022). Hemodynamic collapse following amyl nitrite administration in a patient with smoke inhalation. Case Rep Emerg Med. Vol. ID 9876543. DOI: 10.1155/2022/9876543.

Tenenbein, M. (1999). Deferoxamine and histamine release: Pathophysiology of rapidinfusion hypotension. J Toxicol Clin Toxicol. Vol. 37(6). P. 711–714.

Robins-Browne, R. M., Prpic, J. K. (1985). Effects of iron and deferoxamine on infections with Yersinia enterocolitica. Infect Immun. Vol. 47(3). P. 774–779. DOI: 10.1128/iai.47.3.774-779.1985.

Miller, N. L. et al. (2017). Deferoxamine-induced ARDS and neurotoxicity: A systematic review of high-dose complications. Ann Pharmacother. Vol. 51(11). P. 978–985. DOI: 10.1177/1060028017719438.

Andersen, O., Aaseth, J. (2016). The role of dimercaprol (BAL) in redistribution of heavy metals to the brain. J Trace Elem Med Biol. Vol. 38. P. 53–58. DOI: 10.1016/j.jtemb.2016.03.001.

Goyer, R. A., Clarkson, T. W. (2013). Toxic effects of metals. In: Klaassen C.D., ed. Casarett & Doull’s Toxicology: The Basic Science of Poisons. 8th ed. McGraw-Hill; P. 1015–1018.

Забродський, В. В., Ткаченко, О. І. (2020). Ускладнення терапії бікарбонатом натрію при передозуванні трициклічними антидепресантами. Вісник фармакології та фармації. № 58(7). С. 390–397.

Kim, H .J., Han, J. (2019). Severe hypokalemia and tetany following iatrogenic metabolic alkalosis. Electrolyte Blood Press. Vol. 17(1). P. 18–22. DOI: 10.5049/EBP.2019.17.1.18.

Greene, S. L. et al. (2018). High-dose insulin (HIE) therapy for beta-blocker and calcium channel-blocker overdose: A review of metabolic complications. Clin Toxicol (Phila). Vol. 56(9). P. 789–796. DOI: 10.1080/15563650.2018.1438063.

Brent, J. (2009). Fomepizole vs. ethanol: A review of the ADH-inhibition paradigm in toxic alcohol poisoning. J Med Toxicol. Vol. 5(3). P. 148–154. DOI: 10.1007/BF03161092.

Published

2025-12-22

How to Cite

Чорномидз, А. В., Кланца, М. П., & Луканюк, М. І. (2025). ANTIDOTE TOXICITY: WHEN THE CURE BECOMES THE POISON. Clinical Anesthesiology, Intensive Care and Emergency Medicine, (2), 64–73. https://doi.org/10.32782/2411-9164.23.2-6